Doubt from magnetism

@Viram_2019 sir, @Shwetanshu_2018 bro , @Bhuvanitha_2020 @Unik_2018 sir kindly share ur approch..


For the x direction we can write:
m \cfrac{dv_x}{dt} = qv_yB- \alpha v_x
\Rightarrow m dv_x = qB dy - \alpha dx \quad \rightarrow (1)
Similarly in the y direction we can write:
m \cfrac{dv_y}{dt} = -qv_xB- \alpha v_y
m dv_y = - q B dx - \alpha dy \quad \rightarrow (2)

\begin{matrix} \text{Coordinates} & \text{Velocity} \\ (0,0) & v_x = 0 \\ & v_y = v_0 \\ (x,y) & v_x = 0 \\ & v_y = 0 \end{matrix}

We integrate (1) and (2) with the required limits

0 = qBy - \alpha x
-mv_0 = -qBx - \alpha y

Solving the above two equations we get
\boxed{x = \cfrac{qBmv_0}{\alpha^2 +(qB)^2}}

1 Like

thanks a lot sir..